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Scale dependence of the coarse-grained velocity derivative tensor structure in turbulence
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Velocity fluctuations in hydrodynamic turbulence have a nontrivial structure, characterized by correlations of
the velocity gradient tensor. In this paper, we consider a phenomenological model, incorporating the main
features of hydrodynamic fluid turbulence, aimed at predicting the structure of the velocity gradient tensor M
coarse grained at a spatial scale r. This model [M. Chertkov, A. Pumir, and B.I. Shraiman, Phys. Fluids 11,
2394 (1999)] is formulated as a set of stochastic ordinary differential equations, with three dimensionless
parameters, characterizing the reduction of the nonlinearity induced by the pressure term, the reisotropization
effect of the small scale velocity field, and the influence of the small scales on the coarse-grained velocity
derivative tensor. Semiclassical solutions of this model are obtained and compared with direct numerical
simulations (DNS) data. The DNS data show that the joint probability distribution function of the second and
third invariants of M becomes increasingly skewed as the scale r decreases in the inertial range. The model
results correctly reproduce this behavior provided the parameter that controls nonlinearity reduction is finely

tuned; the influence of the other parameters in the model is much weaker.
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I. INTRODUCTION

The seemingly random velocity fluctuations observed in a
turbulent fluid motion are characterized by their spatial cor-
relations. These correlations are responsible for the power
law dependence of the energy spectrum, described by the
Kolmogorov K41 theory [1]. Generally, it has proven fruitful
to investigate spatial scaling properties of various velocity
correlation functions, and in particular its deviations from the
K41 theory [2]. One of the major limitations of these studies,
however, is that the connection with the dynamical (Navier-
Stokes) equations remains somewhat weak. The line of re-
search pursued in this article is aimed at developing a better
understanding of scaling properties, based on dynamical con-
siderations [3].

The recent work on advection of a passive scalar by a
turbulent flow [4] provides much inspiration and guidance
for our present effort. As it is the case for the velocity field,
the passive scalar exhibits strong deviations from K41
theory. A clear understanding of this problem has emerged
from the study of simple models, such as the Kraichnan
model [5] or other models [6]. The seemingly oversimplify-
ing assumptions that allow one to solve the model still pre-
serve the main physical aspects of the real solution [7,8].
From a technical point of view, these models have pointed to
the importance of Lagrangian considerations.

The importance of the vorticity =V Xii to understand
the dynamics of velocity fluctuations has been stressed many
times [9-11]. Vorticity is essentially the antisymmetric part
of the velocity gradient tensor
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where w; is the component of the vorticity in the ith direc-
tion. The strain, defined as the symmetric part of the velocity
derivative tensor S = (m+m')/2, determines the local stretch-
ing of material lines, and of vorticity itself [ 12]. The velocity
gradient tensor is therefore of crucial importance to under-
stand the dynamics of turbulence.

Coarse graining of the velocity gradient tensor over a re-
gion of scale r, by defining M ,;,=(1/V) [pm,d*x, where T is
a region of characteristic size r, provides an averaged de-
scription of the velocity gradient tensor at scale r, very ap-
propriate in a number of contexts, for example, in describing
the energy transfer in turbulence [13], or more generally in
Large Eddy Simulations (LES) [14]. Scaling laws are ex-
pected in the description of the coarse-grained matrix M as a
function of scale.

To understand the dynamics of the matrix M, one must
address the question of the (Lagrangian) evolution of the
volume I', advected by the flow. Our model couples in an
essential way the evolution of the coarse-grained velocity
gradient M and the geometry of the volume, represented by
the moment of inertia tensor g of I'. The problem can be
posed as a set of stochastic differential equations [3]. Alter-
natively, the description of the system can be recast as a
Fokker-Planck equation for the probability distribution func-
tion of (M,g) as a function of time z. We focus here on the
properties of statistically steady state turbulent flow, so we
look for stationary solutions of the Fokker-Planck equations.
Observing that the statistics are essentially gaussian at scale
larger than the integral scale provides a boundary condition
for the Fokker-Planck equation, which allows us to write
an explicit, although completely formal solution as a path
integral [3].
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To proceed any further requires a numerical evaluation of
this path integral. In view of the complexity of the problem,
we consider here a semiclassical solution of the problem.
This approach is a significant improvement, compared to the
very simplified approach used in Ref. [3], consisting of esti-
mating the path integral by taking only the deterministic so-
lution. The semiclassical approach accounts for the fluctua-
tions in a more systematic manner. The search for the
minimal action trajectory in the appropriate parameter space
is not a straightforward task. The solution used here is based
on a combination of simplex method (amoeba algorithm),
coupled with a Monte Carlo procedure. The latter is neces-
sary to escape from numerous relative extrema.

Our results have been presented in the plane of the invari-
ants of the matrix M [the (R, Q) plane [3,15]], which leads to
a synthetic presentation of the topology of the flow. The
results of the model can be compared with the results of
direct numerical simulations (DNS), obtained at moderate
Reynolds number (R, =130), presented here, as well as with
the results of experiments [14]. These results provide an im-
portant constraint in the study of this model.

The model is introduced in Sec. II. The description in
terms of the (R, Q) plane is discussed in Sec. III, along with
our DNS results. In Sec. IV, our method of resolution is
presented. Section V is devoted to the results of this study.
Finally, Sec. VI presents our concluding remarks.

I1. DERIVATION AND DEFINITION OF THE MODEL

In this section, we briefly recall the derivation of the
model, and introduce our notation as well as the key param-
eters in the model. We formulate the model here in terms of
the matrix M, defining the coarse-grained velocity derivative,
and the moment of inertia tensor g characterizing the geom-
etry of the Lagrangian volume. Our model describes the La-
grangian evolution of M and g in terms of the following set
of equations:

il—A;I+(1—a)(M2—HTr(M2))=7}, (1)

=g YTr(g™), (2)

d — 1
d—f -gM-M'g - ﬂ\’Tr(MM’)<g - gTr(g)Id) =0, (3)

1
—6ab6cd)%5<z), (4)
p

(Dapr(p3t) 17.4(050)) = 7( OucOpa — 3

where p?=Tr(g). Aside from the dimensional quantity &, the
energy dissipation, the model involves three dimensionless
parameters «, B3, and 7.

To justify these phenomenological equations, it is conve-
nient to consider a tetrahedron of Lagrangian particles,
whose positions are 7; (i=1-4). Because of the assumed ho-
mogeneity of the flow, the motion of the center of mass p,
=>,7,; is imaterial, so the geometry of the tetrad is described
by a set of three reduced coordinates, p,. It is more conve-

PHYSICAL REVIEW E 72, 056318 (2005)

nient to define the tensor p{ where « is the spatial index, and
the moment of inertia tensor g=p’p.

The evolution equation for the coarse-grained velocity de-
rivative tensor M is reminiscent of the evolution equation for
the velocity gradient tensor mg,=d,u,: dm/dt+m*=H,
where H is the pressure Hessian, plus viscous corrections.
Numerical observations [3,16] indicate that the pressure term
tends to diminish the nonlinear effect: H~ am?, where the
parameter « in Eq. (1) parametrizes the reduction of the non-
linearity. The incompressibility condition, Tr(M)=0 is satis-
fied, thanks to the IITr(M?) term [Tr(II)=1, by construc-
tion]. This choice of Il as a “projection operator” to impose
incompressibility is dictated by the fact that (i) the pressure
term does not do any work, as it should be the case in an
incompressible flow, and (ii) in the deterministic case (7
=0), the solutions of the system do not blow-up in a finite
time. The stochastic term represents the effect of the rapidly
fluctuating small scales on the pressure term. It is assumed to
be gaussian, white in time, with a scaling form as a function
of spatial scales compatible with Kolmogorov scaling. The
dimensionless factor vy simply measures the intensity of this
noise term.

The equation describing the evolution of the moment of
inertia tensor (the “geometry”) of the set of points, Eq. (3),
can be understood by decomposing the velocity field as an
overall, shape preserving displacement, a straining flow, co-
herent over the scale p [Tr(g)=p?] of the object, and an
incoherent, fluctuating component of the velocity field. Each
of these three terms can be formally written by a filtering of
the velocity field. The global displacement is ignored here, as
we are considering an homogeneous flow. The straining term
is responsible for the coupling between M and g in Eq. (3).
One way to model the incoherent part of the velocity field
over the set of points is to add a fluctuating, white in time
noise term, as proposed in Refs. [3,17]. The effect of such a
term would be (i) to contribute to the overall growth of the
object and (ii) to counteract the tendency of the stretching
term gM to generate very anisotropic shapes [17]. We have
simply replaced the noise term by the B term in Eq. (3). This
term effectively tends to restore the isotropy of the geometry.
This simplifies the search of solutions, as we will explain
below.

To summarize, our model reduces to a set of stochastic
differential equations. In addition to the dimensional param-
eter g, the rate of energy dissipation, it involves three dimen-
sionless parameters: «, the reduction of nonlinearity, B3, the
tendency for the small scale fluctuations to restore isotropy
of the shape, and v, the strength of the noise term in the M
equation. One of the objectives of this work is to explore the
qualitative solutions of the model in terms of these three
parameters.

III. DIAGNOSTICS
A. The (R,Q) plane

Before presenting the results of the model, we explain in
what way the velocity gradient tensor M enables a precise
diagnostics of the flow topology. In the incompressible case,
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its three eigenvalues can be expressed as a function of
the two invariants Q and R defined as =—%Tr(M2) and
R:—%Tr(M3) [15]. The local topology of the flow qualita-
tively depends on the sign of the discriminant D=27R?
+40Q3. Thus, for D>0, two eigenvalues of M are complex
conjugate: the flow is elliptic, with locally swirling stream-
lines. For D <0, the three eigenvalues of M are real: in that
case the flow is locally hyperbolic, and strain dominates. The
zero discriminant line plays a crucial role in this diagram. It
has been observed that in the case of the velocity derivative
tensor m, the probability distribution function is very
skewed, and extends along the positive R side of the zero
discriminant (PRZD) line [15], a fact viewed as a qualitative
signature of dynamical effects present in a very simplified
model [18]. One of the main goals of this article is to com-
pute the joint probability distribution function of the Q, R
invariants as a function of scale. We stress that this quantity
can be computed in Direct Numerical Simulations of turbu-
lence, and is now accessible in experiments [14], suggesting
challenging comparisons between theory and experiments.

B. DNS results

Before presenting the results of the model, we turned to
numerical simulations to obtain detailed numerical informa-
tion, for comparison purposes. Briefly, we have used a stan-
dard pseudo spectral code, described in Ref. [19]. The run
discussed here has a 256° resolution. We have made sure that
the highest wave number in the simulation k. is large
enough to describe the smallest length scales in the flow:
knax 7= 1.4. Our Reynolds number is R\=130, and the ratio
between the integral scale and 7 is L/ 7~ 100. Because the
end of the inertial range is at a scale ~ 107, the inertial range
in our simulation corresponds roughly to a factor 10 in scale.

Figure 1 shows the joint probability distribution function
in the (R, Q) plane, computed at different values of the scale
r in the inertial range. At the integral scale L, the distribution
is almost symmetric with respect to the R=0 axis. As the
value of r decreases, the distribution becomes stretched to-
wards the R >0 part of the separatrix. It is worth noting that
the asymmetry observed numerically is building up rather
slowly as the scale r decreases. The probability distribution
function of (R, Q) obtained when r is in the dissipative scale,
r~ 7, is much more asymmetric than the one corresponding
to inertial scales (r=L/8). This leads us to the conclusion
that the dissipative effects, not included in our model, are
responsible for the significant increase of asymmetry of the
probability distribution function in the (R,Q) plane, in par-
ticular of the large probability built up along the PRZD line.
The probability distribution functions computed from our
model should thus be compared with the ones shown in Figs.
1(a)-1(d), nor with the one computed when r is in the dissi-
pative range, shown in Fig. 1(e)

The energy transfer in an eulerian reference frame can be
readily expressed with the help of our (Lagrangian) model,
Egs. (1)-(4). In the case of isotropic tetrahedra, this energy
transfer reduces to —ar’Tr(M*M") [3,20]. In the following,
we will refer to the quantity —*Tr(M>M') as the energy
transfer.
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FIG. 1. PDF of Q:,R: invariants normalized to the variance of
strain Q«=0Q/(S%), R«=R/{S%)*, calculated by DNS. (a) r=L, (b)
r=L/2, (c) r=L/4, (d) r=L/8, (e) r=27. The isoprobability con-
tours are logarithmically spaced, and separated by factors of e.

Figure 2 shows the scaling laws of the second moments of
strain and vorticity, and of the energy transfer divided by 7,
~Tr(M*M"). According to the Kolmogorov scaling {(Av(r))
o r!3, M(r) should evolve as ¥ %3, hence the second mo-
ments of the strain S (symmetric part of M) and of the vor-
ticity  (antisymmetric part of M) should behave as r=3,
whereas the third moments behave similar to the quantity
related to the energy transfer —Tr(M>M") should behave as
r~2. This is consistent with the fact that the energy transfer
—r?Tr(M?M") is independent of 7 in the inertial range. Figure
2 demonstrates that the Kolmogorov’s predictions correctly
describe the low moments of M.

IV. METHOD OF RESOLUTION OF THE SYSTEM: PATH
INTEGRAL REPRESENTATION AND SEMICLASSICAL
APPROXIMATION

A. Path integral representation

The system (1)—(4) defines a well-posed stochastic prob-
lem. The solutions of the problem can be conveniently stud-
ied by noticing that the probability distribution function
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FIG. 2. Scaling laws of (a) the second moments of strain and
vorticity, and (b) of the energy transfer divided by 2, calculated by
DNS.

P(M,g,t) obeys a Fokker-Planck equation of the form
o"tP(M,g,t) :LP(M,g,t), (5)

where L is a differential operator. In this article we restrict
ourselves to the simplest problem of statistically steady state
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velocity field has been shown many times to have a probabil-
ity distribution function that is very close to a gaussian dis-
tribution. We use this property, and simply assume that at the
integral scale, L, the probability distribution function of the
matrix M is Gaussian:

Tr(MM") } )

(eL )2
The solution of the Fokker-Planck equation (6) can be

considered as a eulerian probability distribution function pro-
vided that the following normalization condition is imposed:

P(M,Tr(g)=3L% ~ exp{—

f dMP(M,g)=1. (®)

This system can be formally solved by using Green’s
function methods. The Green’s function has an appealing
path integral formulation, in terms of all the trajectories con-
necting the initial point (M',g") at time —T to the final point
(M ,g) at time 0. One obtains [3]

P(M,g):fdM’f

X P[M',Tr(g") =3L7%], 9)
M(0)=M
M'g')= f [DM"]
(-1)= =M

2(0)=¢
X f [Dg"lexp[- S(M";g")],

turbulent flows, so we simply take d,— 0. The system thus g(=1)=g’
reduces to a (parabolic) partial differential equation in the (10)
(g,M) variables
M(0)=M 8(0)=g
LP=0. ©)  p(M,g) = f M’ J dT f [oM] f [Dg"Jexp
To solve this equation, one needs to specify the proper 8-=g'
boundary conditions. At the largest scales of the flow, the —[S(M";g") +Tr(M M'/(eL™%)*3], (11)
|
S JTd Te([+ (1 - @) (M = TR ()M + (1 = ) (0~ ITr()]) (1)

0

The boundary condition (7) has been explicitely taken
into account in Egs. (9)—(11). The probability distribution
function P(M,g) is thus determined by considering all the
trajectories starting at some time —7<<0 with the condition
that Tr(g’)=3L? and ending up at time=0 at (g,M). The
action S provides the statistical weight of each trajectory. A
proper evaluation of the probability distribution function
P(M,g) requires an integration over all the possible trajec-
tories. This can be done in principle by using a Monte Carlo
algorithm. However, because of the large spatial dimension,
the problem seems excessively difficult. A straightforward

2yelp?

Monte Carlo calculation leads to configurations that have
widely different statistical weights (by many orders of mag-
nitude). Understanding the origin of the statistically signifi-
cant contributions to the path integral in Eq. (11) is a prereq-
uisite to carry out a reliable Monte Carlo calculation of the
solutions. The study of the semiclassical solutions presented
in this article is the natural first step in such an endeavor.
A very simplified solution, consisting in ignoring com-
pletely the fluctuation term, was considered in Ref. [3]. The
resulting “classical approximation” leads to solutions that re-
produce in a crude manner the main features of the solutions
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obtained in DNS of the Navier-Stokes equations at moderate
resolution [3], and with experimental results [14].

B. Semiclassical approximation

The semiclassical approximation is obtained by identify-
ing the trajectory that maximizes the integrand in Eq. (11).
Formally, this procedure is exact in the limit where the noise
term becomes small: y— 0. In this approximation, one sim-
ply replaces in Eq. (11) the integral by the saddle point value,
obtained by substituting the “optimal trajectory” into the ac-
tion term

Tr(M'M'")
(eL™2)??
The determination of the optimal trajectory can be carried

out by writing the appropriate Euler-Lagrange variational
equation

P(M,g)~eXP—(SC(M;g M'g")+ ) (13)

d IL aL

dt (?Mab aMab ’

(14)

where L is the Lagrangian of the system (S=JdrL). Its ex-
pression is given in Eq. (12).

In our calculations, aimed at determining the probability
distributions in the (R,Q) plane as a function of scale, the
Euler-Lagrange equation (14) requires a number of a priori
unknown boundary conditions. Specifically, imposing (R, Q)
at scale r leaves three unknown free parameters to com-
pletely determine the matrix M. In addition, the time deriva-

tive of M, M is a priori unknown, which leaves eight extra

free parameters [incompressibility imposes that Tr(M)=0],
leaving a 11-dimensional space to fully determine the initial
condition. For each value of (R, Q), our approach consists in
computing the logarithm of the probability distribution in Eq.
(13) as a function of the 11 other parameters, and looking for
its maximum.

C. Optimization methods

Our first attempt to solve the optimization problem in the
11-dimensional space of initial conditions was based on the
simplex method “amoeba,” which is known to converge
when the function to be minimized has simple convexity
properties [21]. In the problem considered here, however, the
function to be optimized turns out to have a much more
complicated structure, so the amoeba converged towards one
of the (many) local minima of the function, but never to the
searched global minimum. This difficulty can be tackled by
using a combination of the simplex algorithm, and of simu-
lated annealing techniques. The algorithm amoeba [21] was
used in our work. The procedure we employed is the follow-
ing: for each value of (Q,R,r) (r being the scale), an initial
regular simplex of characteristic size 0.2 is considered. This
object undergoes a first annealing, whose initial temperature
is equal to 7, then two others, whose initial temperatures
equal yb/4, yb being the optimal value of the function ob-
tained in the previous annealing. In these three annealings,
the temperature is decreased quadratically, and for 10 regu-
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larly spaced values of it the amoeba algorithm is iterated 300
times. In the calculations performed here, the algorithm con-
siders that a local minimum has been found when the relative
difference between the largest and the smallest values of the
function over the simplex is less than 1073

V. RESULTS AND DISCUSSION OF THE SEMICLASSICAL
CALCULATIONS

The method described in the previous section to compute
the “semiclassical” solutions of the model leads to a numeri-
cally tractable algorithm, that allows us to study the behavior
of the solutions as a function of the three parameters « (the
reduction of nonlinearity), B (the isotropizing effect of the
small scale velocity fluctuations), and 7y (the amplitude of the
noise acting on M). The DNS results, discussed in Sec. III B,
provide a natural point of comparison to discuss our data.

Our main finding in this section is that the parameter «
plays the most significant role in determining the qualitative
feature of the solution. Imposing that the solution exhibits
the right behavior for the moments of the vorticity, the strain,
and the energy transfer, as well as for the probability distri-
bution function considerably restricts the value of a.

A. Scaling properties

We discuss first the scaling properties of quantities such
as the square of the strain (S?) and of the vorticity (w?), as
well as of the energy transfer term (—r*Tr(M*M")).

Figure 3 shows the dependence of (S?) and (w?®) as a
function of scale for several values of «, at fixed values of 8
and y (B=0.4,y=0.25). The general aspect of the curves
shown in Fig. 3 is essentially independent of the precise
values of B and 7. The expected scaling law dependence
143 of (w?) is correctly observed for all the values of «. But
the quantity that is the most sensitive to the value of « is
(§2). The fit of the dependence of (S?) as a function of r by a
power law shows a good agreement with the —4/3 exponent
for a~ 0.5, but significant deviations from it for other values
of a [see Fig. 5(a)]. This suggests that the semiclassical so-
lutions of the model can only be compatible with the DNS
data provided the value of « is large enough: a=0.4.

Figure 4 shows the dependence of the energy transfer
term divided by 2, (~Tr(M>M")) as a function of r at a fixed
value of Band y (8=0.4 and y=0.25), and for various values
of a. As it was the case for the quadratic quantities (S%) and
(w?), we found that the qualitative behavior shown in Fig. 4
is fairly independent of the precise values of 8 and . The
main observation is that the value of the transfer has the
correct sign (—r*Tr(M>M"))>0 provided the value of « is
small enough: @=<0.5 [see Fig. 5(b)]. For values of « in this
range, we find that the energy transfer scales with the proper
scale dependence, as seen in DNS. For certain values of «,
the energy transfer is negative at large scales and positive at
small scales: in this case we have plotted in Fig. 5(b) the
average of the sign at the different scales considered. Figure
5 leads to the conclusion that the range of values of « that
lead to a good qualitative agreement with the DNS results is
strongly constrained: only values of « close to 0.45 (0.4
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FIG. 3. Scaling laws of the second moments of (a) strain and (b)
vorticity, for different values of a (8=0.4, y=0.25). Aside from the
straight line 73, @=0.7,0.6,0.55,0.5,0.45,0.4,0.3,0.1 from bot-
tom to top in (a) and from top to bottom in (b).

=< a=0.5) produce results qualitatively comparable to our
DNS results.

B. Evolution of the probability distribution function in the
(R,0) plane

The fact that the value of @ needed to obtain the right
scaling of energy transfer, strain, and vorticity from the so-
lutions of our model has to be rather precisely tuned can be
also seen by studying the computed probability distribution
functions in the (R, Q) plane. [Figures 6(a)-6(d)] show the
probability distribution function at a large (small) value of a:
a=0.6 («=0.2), at two values of r: r=L/2 and r=L/16. The
main difference between the evolution at the value a=0.6
[Figs. 6(a) and 6(b)] and at the low value a=0.2 [Figs. 6(c)
and 6(d)] concerns the growth of the probability distribution
along the PRZD line (the zero discriminant line is shown in
dashed in Figs. 6 and 7). At small values of a, Figs. 6(c) and
6(d), the tail along the PRZD line grows considerably when
the scale r decreases, significantly more than what is ob-
served in DNS. In the other case [higher values of «, Figs.
6(a) and 6(b)] the growth of probability along the PRZD-line
is not observed at all: in fact, the probability tends to grow
more in other parts of the (R, Q) plane.

Figure 7 shows the density of strain [7(a)], vorticity [7(b)]
and energy flux [7(c)] in the (R,Q) plane at the value «
=0.5, and with 8=0.4 and y=0.25, at a value of r=L/8.
Generally, the trends are consistent with the DNS results [3],
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FIG. 4. The energy transfer divided by 72, (~Tr(M>M")) as a
function of scale r for different values of a (8=0.4, y=0.25): (a)
linear scale, (b) logarithmic scale. For large values of « this quan-
tity is negative.

except perhaps for the density of strain, that tends to be less
concentrated around the origin compared to the DNS. Over-
all, the main conclusion is that the parameter «, which con-
trols the reduction of the nonlinearity, has a very strong in-
fluence on the growth of the probability distribution along
the PRZD-line: the smaller «;, i.e., the stronger the nonlinear
term is, the larger the tail of the probability distribution func-
tion along the PRZD line.

C. Discussion

The growth of the PDF tail along the PRZD-line predicted
by the model for small values of « is generally consistent
with the results of [14]. In this work, it was noticed that the
small scales of the flow tend to slow down the effect of the
nonlinearity, estimated at the given scale. This is precisely
the origin of the « term in our model [3]. A large enough
value of the parameter « is needed to sufficiently reduce the
growth of the probability along the PRZD line as r decreases,
consistent with the model’s results.

The fact that the strain density is large in the neighbor-
hood of the PRZD line, and that the tail seems to grow very
strongly when « decreases is consistent with the fact that the
strain (S?) grows faster when r decreases at small values of
a. The energy transfer is positive near this neighborhood,
which explains why the value of @ needs to be small enough
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FIG. 5. Dependance with respect to « of (a) the scaling law
exponent of (S?) and (b) the sign of the energy transfer
(=r*Tr(M>M")) (B=0.4, y=0.25). In (a) the dashed line indicates
the Kolmogorov prediction —4/3. In (b) is plotted for each value of
a the average of the sign of the energy transfer at the different
scales considered. The range of values of a leading to a qualita-
tively acceptable behavior of the model’s solutions is delimited by
the vertical dot-dashed lines.

to have the appropriate sign of the energy transfer. Too large
a value of « leads to a too small contribution from the tail
along the PRZD-line, and to an improper sign of the energy
transfer; whereas too small a value of « leads to an excessive
growth of the strain (S?) at smaller scales (see Fig. 5). The
enstrophy density, which is concentrated in the upper part of
the (R,Q) plane, is not influenced by the tail along the
PRZD-line, which is consistent with the fact that the depen-
dance of {w?) with respect to a is much weaker.

We insist on the fact that the general picture we have
illustrated here for a particular set of values of 8 and 7y does
not depend, qualitatively, on the precise value of B and y
chosen. In fact, the precise value of B plays almost no role,
provided B is not very small. The strength of the noise, mea-
sured by the value of v, plays a stronger role, although it
does not affect in a significant way neither the ‘transition” we
observed, nor in fact the precise value of « for which the
transition occurs. As an example, Fig. 8 shows the depen-
dence of the mean values of S?, w®> and —Tr(M>M") as a
function of r for several values of v, at fixed « and B.

Although the semiclassical solutions computed here re-
produce qualitatively many features observed in the DNS
and in experiments, they also show a number of inappropri-
ate features. The most visible example, as one compares the
probability distribution functions obtained from DNS and
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FIG. 6. PDF of Q,R. invariants normalized to the variance of
strain for (a) and (b) @=0.6, (c) and (d) @=0.2. (a) and (c) r
=L/2, (b) and (d) r=L/16; B=0.4 and y=0.25. The isoprobability
contours are logarithmically spaced and separated by factors of e.

from the semiclassical solution concerns the anomalously
large probability predicted in the R>0, Q>0 sector of the
(R,Q) plane. This aspect of the semiclassical solutions is in
quantitative disagreement with the solutions obtained by
DNS, or observed experimentally [14].
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FIG. 7. (a) Strain variance, (b) enstrophy, and (c) energy flux
densities in the R:,Q- plane for r=L/8, a=0.5, =04, and vy
=0.25. Solid lines correspond to positive values, dashed lines to
negative ones.

VI. CONCLUSION

We have considered a model that aims at predicting the
statistical properties of the coarse-grained velocity gradient
tensor M as a function of the spatial scale r. This model
includes in an essential way many qualitative important fea-
tures identified in turbulent flows. The model is formulated
as a set of stochastic differential equations, and involves in
the form considered here three dimensionless parameters a,
the strength of the nonlinearity reduction, 3, the amplitude of
the term that restores isotropy of the tetrad, and v, the am-
plitude of the noise term in the M equation. Although it is
relatively easy from a technical point of view to write a
formal solution in terms of path integrals, that can lead in
principle to a numerical (Monte Carlo) treatment, we had to
content ourselves as a first step with a semiclassical treat-
ment, which amounts to find the largest contribution to the
path integral solution of the model.

From a turbulence point of view, we have observed in
DNS that the probability distribution function in the (R, Q)
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FIG. 8. Scaling laws of the second moments of (a) strain, (b)
vorticity, and (c) of the energy transfer divided by r* for different
values of y (=04, 8=0.4).

plane when the coarse-graining scale r is in the inertial range
develops an asymmetry towards the R>0 part of the sepa-
ratrix relatively slowly. The very skewed probability distri-
bution functions observed in the inertial range are mostly due
to a viscous (dissipative) effect, not included in our model.

Comparing the results of our model, both in terms of
probability distribution function shape in the (R, Q) plane, as
well as in terms of low order moments, such as (S?), {@?),
and (~Tr(M>M")) (the energy transfer term divided by r?),
leads to important constraints on the possible values of the
parameters of the model. The parameter that was found to
play the most crucial role is «, which parameterizes the re-
duction of the nonlinearity in the model. The main effect of
« is to modify the growth of the probability tail, along the
separatrix. The behavior predicted by the model is in quali-
tative agreement with the (moderate) growth of the probabil-
ity tail observed in the inertial range in DNS only for a
limited range of a: a~0.45. We note that this value of « is
not inconsistent with the values of « reported in the past
[3,16]. In contrast, the other parameters, 8 and 7y, do not
appear to modify very significantly the qualitative behavior
of the solution, unless they are extremely small (8) or too
large (7).

Although the semiclassical solutions of the model repro-
duce in several essential ways the probability distribution

056318-8



SCALE DEPENDENCE OF THE COARSE-GRAINED...

function in the (R, Q) plane obtained by DNS, they lead to a
number of quantitative incorrect features. The main example
is the enhanced probability distribution in the R>0, Q>0
quadrant. The method of resolution (semiclassical) discussed
here should ultimately be improved. It is our belief that the
knowledge gained in obtaining semiclassical solutions
should help us in designing better approximations schemes.
Preliminary results in this direction are encouraging.

We also note that the model can be extended to study
flows with more complicated large scale structures, such as
shear [22] or contractions [23], by simply modifying the

PHYSICAL REVIEW E 72, 056318 (2005)

large scale boundary condition. Such detailed comparisons
will provide stringent tests on the validity of our approach.
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